On varieties of doubly robust estimators under missingness not at random with a shadow variable
نویسندگان
چکیده
Suppose we are interested in the mean of an outcome variable missing not at random. Suppose however that one has available a fully observed shadow variable, which is associated with the outcome but independent of the missingness process conditional on covariates and the possibly unobserved outcome. Such a variable may be a proxy or a mismeasured version of the outcome and is available for all individuals. We have previously established necessary and sufficient conditions for identification of the full data law in such a setting, and have described semiparametric estimators including a doubly robust estimator of the outcome mean. Here, we propose two alternative estimators, which may be viewed as extensions of analogous methods under missingness at random, but enjoy different properties. We assess the correctness of the required working models via straightforward goodness-of-fit tests.
منابع مشابه
Doubly robust estimation in missing data and causal inference models.
The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be...
متن کاملDoubly Robust and Locally Efficient Estimation with Missing Outcomes
We consider parametric regression where the outcome is subject to missingness. To achieve the semiparametric efficiency bound, most existing estimation methods require the correct modeling of certain second moments of the data, which can be very challenging in practice. We propose an estimation procedure based on the conditional empirical likelihood (CEL) method. Our method does not require us ...
متن کاملSecond-Order Inference for the Mean of a Variable Missing at Random.
We present a second-order estimator of the mean of a variable subject to missingness, under the missing at random assumption. The estimator improves upon existing methods by using an approximate second-order expansion of the parameter functional, in addition to the first-order expansion employed by standard doubly robust methods. This results in weaker assumptions about the convergence rates ne...
متن کاملSufficient Dimension Reduction With Missing Predictors
In high-dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full regression information and imposing no parametric models. However, it is common in high-dimensional data that a subset of predictors may have missing observations. Existing SDR methods resort to the complete-case analysis by removing all the sub...
متن کاملConsistent Estimation of Functions of Data Missing Non-Monotonically and Not at Random
Missing records are a perennial problem in analysis of complex data of all types, when the target of inference is some function of the full data law. In simple cases, where data is missing at random or completely at random [15], well-known adjustments exist that result in consistent estimators of target quantities. Assumptions underlying these estimators are generally not realistic in practical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 103 شماره
صفحات -
تاریخ انتشار 2016